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Tile paper analyzes the formulation of the dissolution problem and its solution when 
the growth rate of the particles fluctuates. 

Models based on the introduction of the size distribution function of the particles are 
used extensively in the mathematical description of a number of processes that involve the 
growth of bubbles, drops, crystals, etc. i[l-4]. There are two reasons for this: first, the 
results obtained in such models are entirely satisfactory for practical purposes in regard 
to accuracy and give all the necessary information and, second, the more detailed and rigor- 
ous methods of the mechanics of multiphase systems [5, 6] lead to substantially more compli- 
cated Calculations and often, because of the inaccuracies and the difficulties of completing 
the fundamental equations, cannot provide advantages over the approach based on the distri- 
bution function. 

For the case when the system is in a confined volume and no particles enter or leave the 
voiume, the dissolution problem of the basis of the distribution function has been analyzed 
in [7-9] as it pertains to two dissolution laws: a diffusion law, when the dissolution rate 
is inversely proportional to the crystal size, and a kinetic law, when the rate does not 
depend on the crystal size. In both examples the dissolution rate is proportional to the 
difference between the equilibrium concentration and the current concentration. 

As is known [i0-14], rate of Change in the crystal size can fluctuate greatly, this 
being attributed to kinetic phenomena on the crystal surface during the attachment/separation 
of new particles and also to the variability of the hydrodynamic conditions in the neighbor- 
hood of the crystal. Isolating the systematic (average) part of the rate of change r and 
the fluctuational part, which is assumed to be Gaussian white noise, we arrive at the 
Fokker--Pianck equation [12-14] for the size distribution function of the crystals, 

AL =a__ + D al h. (1) 
Ot Or \ Or ] 

Phenomena similar to the dissolution of crystals can also occur in disperse systems of 
another type, i.e., some of the results obtained below have more general significance but in 
order to make the exposition more specific, we shall deal only with dissolution and the re- 
verse process, crystaliizati0n, for which we obtained Eq. (I) with a fluctuation coefficient 
and acquired some experience in determining this coefficient. 

We should immediately take note of some disadvantages that ensue from the proposed 
idealization in the description of the growth/dissolution of crystals. When the fluctua- 
tional component of the growth rate is approximated by white noise, which is due to the small 
time scale of the fluctuations in comparison with the characteristic time of variation of the 
distribution function, a parabolic equation is obtained; its characteristic property, which 
is realized in crystallization and dissolution problems, will consist in the "smearing" of 
the initial profile of the distribution function that really exists in a bounded interval of 
sizes along the entire r axis.* This corresponds to the fact that some crystals will grow 

*It is known (see, e.g., [i5]) that for nonlinear equations of the parabolic type [Eq. (i) 
is nonlinear, see below] there may exist a situation when a perturbation propagates with 
finite velocity in the presence Of a sharp front, ahead of which the Solution does not chang~ 
Our assertion is based on an analysis of the known exact solutions [12, 13, 16, 17] of the 
crystallization equation and, apparently, is of a general nature for the relations used at 
present for the fluctuation coefficient of the growth rate of crystals. 
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i. Plot of the function G(z). 

during dissolution and, conversely, some crystals will dissolve during crystallization. 
These effects will be insignificant if the fluctuation coefficient (when made appropriately 
dimensionless) is a small quantity. This is usually done in practice (see, e.g., [18]). 
Evidentiy, a more adequate description of the process will be given by equations of the 
hyperbolic type or equations with a different structure, whose solutions do not give rise to 
the disadvantages indicated above. In any case, there are processes such that description 
of crystallization by means of Eq. (i) becomes undesirable [19]. 

ONe of our aims is to map out ways of looking for analytical solutions of the dissolu- 

tion problem on the basis of Eq. (i), Supplemented with relations known from the literature 
for the dissolution rate and its fluctuations. 

Kinetic Regime. In this regim e the dissolution rate depends only on the difference be- 
tween the equilibrium and current concentrations of the dissolved substance and by means of 
straightforward manipulations this relation can be recast in the form 

v ----- k ( M - - Q )  = k (S  r S f d r - - Q ) .  (2)  
0 

The quantity Q is characterized to within 47/3 by the total volume of the crystals which 
can dissolve (with allowance for the initial volume) at thegiven temperature (which we 
assume is constant). As for the fluctuation coefficient D, its functional relation to the 
other parameters of the process has not been elucidated completely and several forms of this 

relation are used in calculations. Following [12, 18], we take the coefficient D to be pro- 
portional to v: 

D = By, B ----- const > 0, (3)  

which was verified in the experiments reported in the aforementioned papers and has shown 
itself to be fairly good in crystallization problems. 

To complete the formulation of the problem it is necessary to give the auxiliary condi- 
tions. The initial condition 

flt=o = g (r) ( 4 )  

expresses the granulometric composition at t = 0. It is also easy to determine the condi- 
tion as r + ~: this is the boundedness of the function f as r * ~. Here in fact we can 

�9 require that f § 0, since in practical situations the function f, Starting from some size 
rm, becomes identically equal to zero. By virtue of the existence of a differential operator 
Of thelsecond order in the variable r it is necessary to formulate one more boundary condi- 
tions for r. This poses the fundamental complexity in the formulation of the problem. In 
the case of crystallization we set the condition for r = r~ - the nucelation radius, which 
is usually assumed to be zero because it is so small in comparison with the characteristic 
(average) size of crystals. This condition expressed the rate of formation of the new 
phase; Nor were any difficulties encountered in formulating the dissolution problem for D = 
O, when the field of the characteristics of Eq. (i) indicated that no condition at all should 
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be set for r and the solution of the problem is determined uniquely by the initial condition 
(4). The natural physical limits on the variable r for Eq. (i) are given by the interval r 

(0, ~). Mathematically, however, the point r = 0 is in no way isolated under the condi- 
tions (2)and (3) and it is scarcely feasible to set a condition at r = 0 which is associ- 
ated with the rate at which particles disappear since this quantity is one that is sought 
rather than one that determines the problem, as is clear in the limiting case D = 0. With 

these circumstances we suggest that the most natural requirement is that the problems be 
consistent at D # 0 and D = 0. First let us make a necessary condition (for further dis- 

cussion) 

d~./dt = v, ~,lt=o = O, ( 5 )  

temporarily assuming v to be a known function of t. In this case Eq. (1) becomes 

Of/OL = BOZf/Or z + Of~Or, (6) 

and the parameter ~ will have the same sign as the time by virtue of the notation we have 

adopted:for the dissolution equations (i) and (2). 

For B = 0 the characteristics of Eq. (6) have the form r + k = const and the value of 

the initial function (4) will be transposed along them without distortion. The extreme 
characteriss which delineates the initial region r~.0, is determined by the relation 
r = -~. For B # 0 the initial distribution will be "smeared" and, in our opinion, for the 

consistency of the solutions as B + 0 it is necessary to set the condition requiring that 
there Be no inflow of crystals from the region r < -%, i.e., that this region not affect 
the region r > -%, as is the case when D = 0. This condition is equivalent to conservation 

of the number of crystals in the regi0n r 6 (-%, =): ffdr = const. Then, integrating Eq. (6) 

over r within the given limits, we easily arrive at the sought condition 

BOf/Orlr=-a = O, (7 )  

which is also satisfied for B = O. With this the formulation of the problem is completed. 

we note that relations (2) and (3) make the problem of determining the function f nonlinear. 

By the simple change of variables r + ~ § r, X § k, Eq. (6) is transformed into the 
heat equation and condition (7) is set at a "fixed, point. The solution of this problem 
is easily found by standard methods, 

{ [ ( r+)~--~)z  ] + e x p [  ( r + ~ ' + $ ) 2  ]}d~ �9 (8) f (r, s ---- 1 .f g i~) exp 4Bs 4.B;~ " 2 ]/~--B'L- 0 

From this we determine the third moment M of the distribution function, 

M=[r3fdr=(B~) 3/2fg(~) O ~-- ~ ;~ + ~ d~, 
o 2"l/ff~- + 6  2-I/B--~- 

where 

G (z) = 2 [2 (1 + z 2) exp (-- z 2 ) / ~ ' a - -  z (a + 2z z) erfc (z)]; 

2 o 0  

j" exp (-- t a) erfc (z) -- "l/a- dt. 

The plot of the function G(z) is shown in Fig. i. For large values of the argument the 
function G(z) has the asymptotic form 

G ( z ) ~ - - 4 z  3, z - + - -  oo; G ( z ) ~ ( 3 / z ~ a l / 2 ) e x p ( - -  z2), z--+ + oo. 

(9) 

(10) 
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For a specific function g(z) the integral 
fore, the function M = M(X) can be determined. 
completed by integrating (5): 

(9) can be calculated in principle and, there- 
The solution of the problem in this case is 

t = d /k Ql, 
o 

(ii) 

which associates the parameter X with time. The functions f and M (the volume of the try- 
stals) also become determined by virtue of (ii). 

It can be shown that M(X) § 0 as % § ~ for bounded functions g(r). As a result, the 

function M at some X = k k becomes equal to Q (the inequality M(0) =S g(r)r3dr > Q' which 
0 

ensures the necessary driving force of the process, should be satisfied at the initial time). 
A finite time will correspond to the value % = kk by virtue of the divergence of the inte- 
gral (ii). Making % tend to Xk in Eq. (8), we obtain the equilibrium distribution function 
f*. We note that the equilibrium function f, cannot be obtained from Eq. (i) for ~f/~t = 0 
since the other terms of this equation become zero at t § ~, i.e., the equation becomes com- 
pletelydegenerate. 

Passing to the limit B § 0 in Eqs. (8) and (9), we obtain the relations 

f (r, Z) = g (r + Z), M = i r3g (r -[- k) dr, 
.o 

(12) 

which are easily reduced to the fundamental equation of [9] upon satisfaction of Eqs. (2) 
and (15). 

Power Dependence of the Dissolution Rate on the Crystal Size. Besides the kinetic 
regime considered above, more complicated laws governing the variation of crystal size are 
used in dissolution theory and practice, e.g., a diffusion law when v ~ i/r and a law v 
i/ri/2 [8, 20], Both examples come under the general case of the power law 

v = k ( M - - Q ) / ~ ,  (13) 

which has also been used to analyze crystallization processes [3, 21]. Usually, ~6(0, 1). 
We notethat, as before in (2), we use a linear dependence of the dissolution rate on the 
supersaturation, although the calculations in essence are not made more complicated with 
the more general formula v ~ ~(s), ~(0) = 0, where ~ is an arbitrary function (in practice, 
usuallya 'power function). This is mainly because the linear law is obtained from theore- 
tical considerations and the power formulas indicated above have exponents close to unity. 

For the fluctuations of the crystal growth rate we use another relation 

D = rv/E, E = const, 

which was proposed in [22]. Introducing a new variable by analogy with (5) 

(14) 

d'c/dt ---- k (M - -  Q)/E, ~lt=o = O, (15) 

we rewrite Eq. (i) as 

r~_l o___L_~ = oaf § ( 1 - r  of r f. (16) 
O~ Or 2 r Or r ~ 

in contrast to Eq, (6) the Doint r = 0 here is a singular point and this circumstance im- 
poses the condition that the solution of Eq. (16) that is bounded as r + 0 (in fact, f ~ 0 is 
obtained) be chosen. Theother auxiliary conditions for thisequation remain the same as 

before. 
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Equation (16) admits separation of variables and thus allows a more ~eneral solution to 
be constructed by superposition of the partial solutions: A(~) exp(-~2~)r~Jm_~(SrT), where 

is the separation parameter, ~ = (m - E)/2, y = (m + 1)/2, Jm_=(z) is a Bessel function 
of the first kind [23], which ensures that the solution is bounded (with allowance for the 
factor r ~) as r § 0, and A(8% is a function which is determined by the initial condition 
(14). Upon executing the Fourier method while taking the known integrals into account [23], 
we obtain the following expression for the function f 

f (r, "c) ~ g (~) ~ - ~ I ~  exp 
27~ 5 [ 2"r ] L 

(17)  

where v = (E + m)/(w + i), and l~(z) is a modified Bessel function. 
third moment of the function f gives 

Calculation of the 

3 

co -}- I (47z~) o+-'-i oo ~ - ~  1 + v, d~, (18)  M = r (v + 1) [ g (~) ~2(o+e) F ,E -l- ~o - -  3 ~2v 
�9 . 4 x _  ~ 

0 

where F(~; y, z) is a degenerate hypergeometric function of the arguments given above, and 
F(z) is the gamma function. This relation reduces the solution of the entire problem to the 
integration of (15"). 

Functionally Invariant Solutions of the Dissolution Equation. Equations (5), (8), (9) 
and (15), (17), (18) obtained above in principle solve the respective dissolution problems, 
by reducing them to the successive execution of several integrations. This cannot be com- 
pleted in the general case, however, by analytical means. The greatest inconvenience is 
presented by the numerical calculation of the integrals (9) and (18), which are then used in 
the secondary integrations of (ii) and (15). More detailed information about the properties 
of the fundamental dissolution equations can be obtained in some limiting cases, although 
even then it is often necessary to determine the characteristicsof the initial function 
g(r) [7-9]. 

Any exact solutions, which sometimes permit general conclusions to be madeabout the 
properties of the solutions and can also serve as test variants for checking numerical 
calculations, are of great assistance in the analysis of processes described by nonlinear 
equations. For problems of dissolution and other similar processes in the case when the 
particle growth rate does not fluctuate Buevich [8, 9] constructed a family of functionally 
invariant exact solutions of the fundamental equation which, with a successful approximation 
of the initial function, make it possible to analyze real processes fairly reliably and to 
make general conclusions. It proved possible to use sueh methods also in related problems 
of crystallization from solutions with allowance for the fluctuations of the crystal growth 
rate [16, 17]. In the simplest variant the essence of the method is reduced to separation 
of variables in the nonlinear equation and subsequent construction of a set of exact solu- 
tions By superposition of the simplest solutions. The validity of this scheme, which is 
usually applied to linear equations, stems mainly from the fact that the nonlinear part of 
the differential operator is due to a factor which depends only on time and appears in the 

expression for the dissolution rate after calculation of the third moment of the distribution 
function. In the analytically more involved situation with fluctuations of the crystal 
growth rate at a constant fluctuation coefficient, direct separation of variables in the 
fundamental equation may prove to be impossible and a solution must then be constructed on 
the basis of other considerations [17, 24]. Separation of variables is possible for Eq. (i) 
with the laws we have used for the dissolution rate fluctuations, i.e., Eqs. (3) and (14), 
but with the • m power law for the dissolution rate we arrive at Bessel functions. Such a 
set of solutions will be somewhat inconvenient for the purposes of approximating the given 
auxiliary conditions; accordingly, we use functionally simpler expressions which involve an 
exponential function. 

Let us take Eq. (i)with laws (13) and (14) for the dissolution rate and its fluctua- 
tions. As the "fundamental" solutions we use 
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fi (r, i) = r~ (t) exp [ 
~i(t)/~O+1 ] 

O + 1 J" (19) 

A similar relation, but with a constant ~i, was used in [8] in an analysis of the problem 
for D = 0. Looking for the solution in the form of the sum of n terms of the form (19), 
upon substitution of this sum in Eq. (i) we obtain the system (~ = k[M - Q]) 

dOi/dt -b cPO~• [ l  -b  (1 -}- 2c0)/E] = 0, 

d• 1 ) •  0, i =  1, 2 . . . . .  n, 

(20) 

(21) 

such that Eq. (i) will be satisfied if the system is satisfied. Dividing Eq. (20) by Eq. 
(21) and integrating the resulting expression, we find the relation between the functions 

0 i and Ki: 

0i (t) = ci [• (t)]", I ~ = (E -6  1 -F 2c0)/(1 + o ) ,  i = l ,  2 . . . . .  n. (22) 

In exactly the same way, if we separate, e.g., the first equation from the system (21) and 
divide it by the i-th, upon integration we obtain 

•215215 [~t = 0, i =  1, 2 . . . .  , n. (23) 

The system of 2n equations 
<~(t). 
tion of 

(20), (21) thus in fact reduces to one equation for the function 
It is necessary beforehand to calculate the third moment Of the distribution func- 
the solution sought. We have 

M=.frqdr=r o + 4  (co+1)~/,o+,, c,[• 
0 o +  1 (24) 

= I" ( 0~+1  ~ + 4 , (o "-I- 1) a/(~+l~ [x, (0] 8 ~ c~ [1 - -  ~ x l  (t)1-6, 
t = l  

where $ = (~ + E -- 3)/(m + i). 
theequation 

The function K1(t) is now found by simple integration from 

dut/dt q- k[M (~x) - -  Q] x~ (1 q- o)]E ~ O. (25) 

The i~itial condition <i(0) must be proven for Eq. (25). Taking this into account, we have 
at our disposal 2n arbitrary constants ci, Bi, Ki(O), the appropriate choice of which can 
result is a good approximation of the given auxiliary conditions. The functions Ki are 
best arranged according to value: Ki(t ) > mj(t) for i > j. Moreover, in order for the third 

moment to exist it is necessary that all K i be positive. Form this and from Eq. (23) it 
follows that Bi > ~ for i > j and 8n < I/K~(0). Since dissolution begins when M > Q, it 
follows from Eq. (~J) that the function K l and hence all <i, i = i, 2, .... n, will decrease 
monotonically and, therefore, in accordance with Eq. (22) the functions 8 i will also decrease 
(c i are assumed to be positive quantities). As is seen from formula (24), the volume of the 
crystals will decrease (i.e., dissolution will occur) only when E > 3 -~, which is consis- 
:tent with the condition that the fluctuation coefficient be small, as indicated above. 

In constructing solutions,:by means of the superposition of the terms of (19), we can use 
either an infinite number of these terms or a continuous distribution in the form of an 
integral over some set. Here we confine ourselves to an analysis of the continuous distri- 
bution over the entire interval rE(0, ~). In the given case we can use the formulas for the 
direct and inverse Laplace (Riemann-Mellin) transformations for the relation between the 
initial function (4) and the "spectral" density ef the distribution. Operations similar to 
those above lead to the relation 

f =?N(y)g--%[• y]~exp{-- r~+ls[~(t)' Y]}dy, (26) 
r~ 0 o + 1  
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where 

e [•  y]- i  = [• (01-1 _ [• (0)]-1 + y-1. (27) 

Substituting t = 0 into this and using Eq. (4), we see that the function N(y) has as its 
Laplace transform the function g(r)/r ~ which can be expressed in terms of the variable ~ = 
rW+I/(m + l).in order to determine N(y) from the Riemann-Mellin formula. The properties 
of pairs of functions which effect a direct and an inverse Laplace transformation are well 
known and we assume that the function g(r) is such that N(y) exists. Thus, the function 
N(y) Can be assumed to be known. For the complete solution of the problem we must still 
determine the time variation of the function K(t), for which purpose we calculate the third 
moment of the solution (26): 

00 

o o + 1  o 
(28 )  

The functions e and K satisfy the same equation 

ctx-1/at = ,~ (o + l) {M [• •176 - -  q}, (29) 

but different initial conditions: ~It=0 = ~o, glt=0 = Y- The use of just one of these 
functions (E) without a relation between (27) and K(t) would make it difficult to find the 
latter because the integration in (28) is performed over the variable y and y would be per- 
forming two functions, that of a variable of integration and that of the initial condition 
for Eq. (29), written for the function E. Now the dependence on y in the integral (28) is 
explicit and in some cases it can be calculated analytically and the entire expression for 
M depends on one free parameter, K ~ Thus, Eq. (27) makes it possible to "unlink" the pro- 
blem of finding the variable defined by Eq. (29), which is a great advantage even when the 
integral in (28) has to be found numerically. 

K ~ Having integrated (29) for the initial condition Kt= 0 , we obtain the complete 
solution of the problem, which depends on one parameter K0 and satisfies the initial con- 
dition (4). Such arbitrariness in finding the solution is apparently attributable to the 
existence of a differential operator of the second order in the variable r. This parameter 
can be arranged so as to satisfy other requirements imposed on the solution. 

In conclusion, we point out that a set of "self,similar" solutions can also be con- 
structed for the kinetic regime with conditions (2) and (3)in the following form: 

[ = ~ Oi (t) exp (-- • (30) 
i = l  

where the numbers K i are constant. The calculations are similar in many ways to those 
carried out in [8, 9, 16] and, therefore, are not given here. We note, however, that as 
before when the family (19) was used, the coefficient of dissolution rate fluctuations 
should be small enough, B < i/max{Ki} , for the volume of the crystals to decrease with time. 

NOTATION 

B, E, k, Q, and ~, physical constants in the laws of dissolution and dissolution rate 
fluctuations; c i and 8i, integration qonstants; D, coefficient of dissolution rate fluctua- 
tions; f(r, t) and g(r), crystal size distribution function and its initial value; f i, set of 
"self-similarity" solutions; M, third moment of the distribution function; N(y), spectral 
density of self-similar solutions; r, r m, and r,, crystal size, its maximum value, and the 
size of new-phase nuclei; s, undersaturation; t, time; v, dissolution rate; and e i and <i, 
functions of time in the self-similar solutions. 
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